Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules.

نویسندگان

  • Sangjin Park
  • Kyung-Bok Lee
  • Insung S Choi
  • Robert Langer
  • Sangyong Jon
چکیده

We report a facile approach to the construction of patterns of biomolecules based on polymeric self-assembled monolayers (pSAMs) that possess dual functions: "bio-reactive (post-functionalizable)" and "bio-inert (anti-biofouling)" properties. To prepare pSAMs on Si/SiO2 wafers were synthesized new random copolymers by radical polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), 3-(trimethoxysilyl)propyl methacrylate (TMSMA), and N-acryloxysuccinimide (NAS), and referred to as poly(TMSMA-r-PEGMA-r-NAS). Poly(TMSMA-r-PEGMA-r-NAS) was designed to play triple roles: "surface-reactive", "bio-reactive", and "bio-inert" ones. The pSAMs of poly(TMSMA-r-PEGMA-r-NAS) were formed on Si/SiO2 wafers with 1 h incubation of the substrates in the polymer solution, which showed approximately a 1 nm-thick film as measured by ellipsometry. After the formation of the pSAMs, the feasibility of the pSAMs as a dual functional surface (bio-inert and bio-reactive properties) was examined. The ability of the pSAMs to block nonspecific adsorption of proteins was evaluated against bovine serum albumin as a model protein. High-resolution N(1s) X-ray photoelectron spectroscopy (XPS) analysis on the protein adsorption revealed that significant reduction up to approximately 97% was observed compared to the unmodified Si/SiO2 wafer. In addition, micropatterns of streptavidin with high signal-to-noise ratios were achieved using microcontact printing (microCP) of NH2-bearing biotin onto the pSAMs of poly(TMSMA-r-PEGMA-r-NAS) on glass slides, which suggests that other biomolecules could also be efficiently immobilized onto the pSAMs with high specificity while minimizing nonspecific adsorption. On the other hand, the surface density of both bio-reactive and anti-biofouling functionality could be tailored by simply changing initial feed ratios of each monomer in the polymer synthesis: different molar ratios of the bio-reactive group (NAS: 33%, 20%, and 10%, respectively) were employed. When micropatterns of streptavidin were constructed, the pSAMs with 33% NAS moiety showed the highest immobilization of the protein. Taken together, the present dual functional, random copolymers may have warrant applications in the field of biosensors and biochips.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionality of Nanopatterned Polymer Surfaces

The different methods of the nanopatterning of polymer layers, UV laser ablation, plasma depositing technique, electrochemical deposition and soft lithography are discussed as methods of surface patterning. The different surface functionalities are described, especially the effects of increased surface hydrophobicity/ superhydrophobicity created by coating substrates with low surface energy mat...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Construction of High-performance Biosensor Interface through Solvent Controlled Self-assembly of PEG grafted Polymer

Self-Assembled Monolayers (SAMs) are conventionally exploited for modification of the biosensor surface due to its easiness of formation as well as readily tunable properties. However, the lack of 3-D nature and robustness has limited its application. We develop a Polymeric Monolayer (PM) based on a water-soluble PEG-grafted polymer that retains the advantages of SAMs and at the same time bears...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 23 22  شماره 

صفحات  -

تاریخ انتشار 2007